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PROPULSION

SUMMARY

OF A FLAPPING AND OSCILLATING

By I. E. GARFUCK

Formulm are given for the propelling or drag fwce

exptied in a uniform air stream by an ainfo-il or an

airfoikikron combination, 08ciktiq7 in any of three

d&W8 Of fTMi07X VWtiCdj(Zp@l& tOTSi071d 08ciJ7di071$

about a jixed a.mk parallel to the 8pan, and angular

08d&zti0n8 of the aileron aboui a hinge.

INTRODUCTION

It is the object of this paper to investigate theoreti-
cally the horizontal forces experienced by an airfoil
or an airfoil-aileron combination n a uniform air
stream made to execute flapping motion or to perform
angular oscillations about a fixed axis parallel to the
span. The problem treated is that of an infinite wing,
or wing aqd aileron, performing steady sinusoidal oscil-
lations in any of three degreea of freedom: vertical
flapping at right angles to the direction of motion,
oscillations about an arbitmq- tied axis parallel to its
span, and oscillations of the aileron about a hinge.

The work of Wagner (reference 1) for calculating
the distribution of vorticity in the wake of an airfoil
in nonuniform motion appears as a starting point. A
vortex wake is generated by the oscillatory motion,
which in turn affects the entire nature of the forcw
e..perienced by the wing. Beautiful experimental
checks of Wagner’s theory of the mannar in which the
circulation builds up have been obtained by Farren
and Walker. (Cf. referenee 2, ch. 9 for a morb detailed
bibliography.) Birnbaum and Kiissner (reference 3)
have also attaoked the problem of obtaining the lift
forces on an oscillating wing by certain series expan-
sions that are rather cumbersome to handle. Glauert
(reference 4) has treated the case of an oscillating air-
foil and has obtained expressions for the forces and
moments that cheek ~ith Wagner. Theodorsen (ref-
erence 6) has developed compact expressions for the
lift and moments in the case of an airfoil-aileron com-
bination of three independent degrees of freedom and
has applied the results to an analysis of the wing-flutter
problem. The foregoing references are concerned only
with the lift forces, not with the horizontal forces;
however, von K&m&n and Burgem, who present in
reference 2 a n$sumclof the w6rk (to 1934) on non-

uniform motion, calculate there the propukion effect
on a flapping wing. The premnt paper makes appli-
cation of the compact formulas developed by Theo-
dorsen and of the method outlined by von K&m&n
and Burgers to treat the propulsion on a wing oscil-
lating in three independent degrees of freedom.

The assumptions underlying the theory are small
qnplitudes in the various degrees of freedom and a
(iniinitaly) narrow width of the rectilinear vortex
wake, as well as the usual assumption of a perfect fluid.
Quantitative agreement with experimental values,
which are not very abundant, can hardly be expected
since the iinite width of the wake is important with
reg~d ~ co~dwatio= of the r&tance; nevefie
less the results can be useful for interpreting such ex-
periments as mist on the so-called ‘!Katzmayr effect?’
(reference 6) and for clearing up certain aerodynamic
features of the nature of the flight of birds.1 Experi-
mental tasta on an oscillating and flapping wing are
being conducted at the present time by the N. A. C. A.

This paper is not concerned with the problem of
,flutter,which is an instability phenomenon that mani-
fests itself in certain critical frequency ranges and is
due to an interaction and feedback of energy because of
coup.lingin the various deggees of freedom. (Cf. refer-
ences 3 and 5.) Profile drag is to be comidered as ad-
ditivo to the horizontal forces obtained.

FORCES AND MOMENTS ON AN OSCILLATING AIRFOIL

Consider an airfoil represented by the straight line of
@r& 1. The airfoil chord is of length 2b and (its mean
position with b as reference unit length) is assumed to
extend along the z axis from the leading edge z= —1
to the trailing edge z= + 1. The coordinate z=a repre-
sents the h of rotation of the wing, Z=C the coordinate
of the aileren hinge. The airfoil is assumed to undergo
the following motions with small amplitudw: A vertical
motion h of the entire wing, positive downward; a
rotation about z=a of angle of attack a, positive clock-
wise and measured by the direction of the velocity v
at i.dnity and the instantaneous position of the wing;
an aileron motion about the hinge .C=C of angle L?,

lIcielntmwting toobservethnt the K8tzmaYTeffwcoaIu%iIInature elm In the
motionofML % ‘The Phydcal Prindpl@ofFM Laomotion:’ by E. G. Rich.
arckm, Jour. EXP.13101CaY:wI. -, no. L Jan. lEM PP. W-74.
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measured with respect to the undeflectod position of
the w@ itself.

h

L.eu@ng ea@ L.-+._-:e
FmuBx L—Pammotemof the eirfon—eaarm combfnetIon.

Let us consider sinusoidal oscillations in the various
deggees of freedom and use the complex-number nota-
tion

~= @i(@+*o)
p=p&u@+P,)

}
(1)

h= l@@L+V,l

The constanb ~, /3., and ~ represent the maximum
amplitudes in the various degrees of freedom, m, w,
and ~ are phase angles, and the parameter p determines
the frequency of the oscillations. By means of the rela-
tion

P=: (2)

an important parameter k is defied, i. e., k=pblv. It
will be seen that 2r/k is the wave length between suc-
cessive waves in the vortex wake in terms of the half-
chord b as reference length.

The following three formulas for the lift and moments
on an oscillnt@ airfoil of three degrees of freedom are
due to Theodorsen and are taken horn reference 5:’

P=–pb’(mra+z&dti–vT&–T,b;)
–2arpvbc(k)Q (3)

‘.=-pb{<i-a)vb’+”b’(++a’)’+T’’d’+T”o”

Mp= –
-(

pb T17zb&+2T1zbzE+~T1gB–&vbTl$

1
–;T3ZFj-T,tJi –#T,,C(k)Q (5)

where

()Q=va+h+b ~–a b+~l’’mvP+&Td
These equations are to be interpreted as follows: The
real pari-of P denotes the lift force (positive downward)

?ThewrIt8r uisbestor@ord the fectthet inordertoestnbkb aobmkontbesa
ISI=J *OIM he @ @m@ @ titb tie tidds vambw =m=fm @van
by Wagner,131e@ von Kdrndlnand Bnrgemjend Kilssnerin tbdr SIMM cnw
(rafolwlm91t04). Idanticelagrmment kmsrmoWiinell~ mmptthatin@
caseofK7kneI’aformulasa nnmerbalclmkwm madesinceanardrtlc cbmkwmmt
fc&blL The numericalagrmmentmu * amept in the m.wof the wfng.eilemn
combinationwhereKDsmExmnkm-e rongbaPDMh8tioM.

A resmt @perby Cfmla(mferencn7)dmea mention. OfmbIdmimmmpmsdom
&tie~ndmmmt ona-@Wtit W@~tititie~tiof
Tbeodoraaqelthougbthe method is mmewlmtmoreInrolv@. The fanctbmsde-
notedby Oicsdaes X’end X“mrreqmndto 1-F and -O dodnwlIn qnation (6).

associated with the motion given by the real parts of
(1); i. e., a=% cos (pt+w), 13=& cos (pt+pJ, and
h=h cm @+n). The imaginary part of P denotes
the lift force associated with the motions a= a.o sin
(@+w), B=t% h (pt+m), and h=ko sin (pt+w).
Similarly M. and MB denote in complex form the mo-
ments (positive clockwise in @. 1) about z=a and
Z=C, respectively, due to the motions (1). (The mean
value of a or f? is considered zero. When the mean
values are different from zero, the forces and moments
arisinghorn constant values amand IL are to be added,)
In equations (3), (4), and (5) there occur various
symbols that have not yet been defined. The T’s,
i. e., Tl, TS, T4, etcv are constants deiined completely
by the parameters c and a (reference S, p. 5). For
reference they are listed in appendix I, where thoro is
rdsogiven a collection of the symbols employed in the
notation of this paper. The function C(k) is a useful
complex function of the parameter k (see (2)) and is
given by

C(k) =F(k) +i(3(k) (6)
where

~= Jl(Jl+Yo)+ Y, (Y1–JO)

J1+YO)2+(YI—JO)2

(7= –
Y*YO+JJO

(J,+ YO)’+(Y,–JO)’

Functions Jo, Jl, Yo, and YI are standard Bessel func-
tions of the first and second kinds of argument k.
Fig-e 2 and table I, which are taken from reference
5 (with certain minor changes), illustrate these func-
tions.

In what follows we shall be interested only in one
prt of the preceding complex equations. It is an arbi-
trary matter whether to employ the real or imagimuy
Parts. The choice made here is to treat the imaginary
pi%, and we write down for reference the imaginary
pts of equations (l), (3), (4), and (5):

a=cq Sin (pt+~)

B=f% sin (@+wl)

1

(7)
h=k sin @t+@)

Lm
F

.80

.60

.40

.20

-G

o ‘4e8m 1216 20 24 28 32 36 40
I/k

FIOUEE2.-l’be fundlone Fend -Q against I/k.
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P=–pb’[ti~ cos (pt+n)-d@ sin (pt+~) +~baqp’ h (@+n)
—vT4&p COS @+w)+T1b&p2 Sill @+pl)l

–2twb{vq sin (pt+d +hp cos (pt+w) +b(~– a)~p cos @+d

+>il sin (pt+w)+~h%p cos (pt+w-i)]

–2iwb{v~ cos (pt+d –~p sin (Pt+d –b(~–a)wp sin C@+d

+>& COS (pt+%)-~b&p Sin @t+*)]

‘a=-’bw ) ()
a bwp cos @t+n)—mb2 ~+as qp2 sin (pt+n)

+TMdPOsin (@+q)+l’,,vbf?,p COS (pt+q) ~

–2T#&p2 sin (pi+ W,)+a.b&p’ sin @+%)~

< )[
+2pvb2 a+; P Vw sin (pt+ti)+&p cos @t+%)

+b(+a)~pcos @+d +>BO* @+wl)

1 < 1)[
+~bhpcos (pt+d +2pvb2 a+z O VUO cos (pt+w)

(8)

(9)

–&bTmhp Ws (@+w) +#’..b2Bop’ sin (pt+n) +T,bhp’ sin (pt+wz)]

–hp sin (pt+~)-b&z)qp h (@+d +T#I%cos (pt+d

–*Bop sin @t+%)] (lo)

In addition to these equations we will need the expression for the force on the aileron. This equation is obtained
in complex form as (use formulas on pp. 5–8, reference 5)

(
PB= —P62 —vT4&—T4h+bT&Fr

..

)
1 vT&—&T@

—2pbv 1~~(l–c)&+>~&#+& (l–c)T,@]

–2pvbTnC(k) Q
And the imaginary part is r

PP=–pb
1

—V1’4Wp COS (@+po) +T~p2 sin @t+(Pi) —bTgqp2 Sill @+qo)

—&T#oP cos @t+d +;=T2130P’ ~ (@+pl) ]-zpbo-~;(l-c]~pcos (@+wo)

+;V~&&’~o Sin @+q,) +:(l–c)T,of?op COS @+ql)
l-2@bT=’@~fi ‘t+”o)

+&p Cos (@+~) +6 ()
~—a qp cos (pt+qo) +~vf?o sin @t+ql)

+%b’’’pcos @t+’Jl-2@bT”t_v@c0s ‘t+qO)-hpti@t+p2)

() “%30P ~ (@+(%)–b ~–a u,p sin (pt+qo)+~v~o cos (pt+qJ –z
1

“(11)
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Following the method of von IWm!5n and Burgers
(reference 2), the average horizontal force will be
detetied in two ways: (1) by the energy formula
given in equation (12), and (2) by the force formula
given in equation (13). The agreement of the results
of the two methods will thus furnish a check on the
work.

ENEEGY FORMULA

where ~ represents the average work done in unit
time in maintaining the oscillations (7) agftinst the
forces rmdmoments (8), (9), and (10); ~ represents the
aversge increase in kinetic energy in unit time in the
vortex wake and; ~~- denotes averzge work done in
unit time by the propulsive force P..3

FORCE FOFtMUf.A

P== rpfY+ aP+flP~ (13)’

where P= is the propelling force; a and Bare given in
(7); P in (8), and P~ in (11); JS’is obtained from the.
relation S=li~ ~ y-l Where y is the vorticity

distribution. The value of S is finite, since Y is iniinite

in the order of —
&

at the leading edge x=—l, and is

given in equation (25) and derive~in appendix III}
We proceed first to evaluate W in equation (12).

The instantaneous rate at which work is done in main-
taining the oscillations is

-m=–(PL+M=&+M~)

For the average work done in unit time we have

on employing equations (7) to (10) and performing the
indicated integrations, we obtain after some lengthy
but elementary reductions

rfdtiarus ordreg.
4 Farmnfe (13)fsobtafmd by a sUgbt axtcaslonof the mwlmdof rafaianca%PP.

335-W3.The ‘%ctlcm’’forcsrcSarf?fnKfmm the Ir&dtemxtldtyat thelmdfngedi?a
i, qdalned in mfuenm 2 @P.52and 3W fdOW l!nesIafddown hy &ammd and
Ckd 6% dm refaranm%PP. 135and =) ‘rbe ad tit & ~.dd-~
bnpllasfbat tbe fdealflowferan fnflnftafytbfn wing k mn’mlhb

lwtiq-vm, ma Wtioneofatig Mhmmd@md~@tie
l@dIngedgeand sharp at the frafffng-

In order to calculate ~in equation (12), we need the
expression for the vorticity in the wake. The magg-
tude of the vorticity in the wake is given in complex
form by

“(’%9U= Z.Lef’e (16)
where UWf~is a complex quantity determined in (19)’.
(Cf. reference 5, p. 8, in which x instead of x–1 is used
in the exponent.) From the definition of the circula-
tion about the airfoil as the integral of the vorticity in
the wake we have in comple-xform,

r= J “Uiix= —~U&eipf (17)
1

Also from reference 5, equation (8), the condition for
smooth flow at the trailing edge lends to the relation

S4

l“ZT
Tr 1

~udx=vci+h+h
()

~—a &+ ~op

+b~~=Q (18)

Combining (17) and (18) we may write

r.2@-J”(@-l)U&

On equating coefficients of ei” on both sides of this
relation and solving for the quantity t7&i~ (for the
nwluation of the definite integral in terms of Bessel
‘unctions see reference 5, p. 8), we obtain

U@=-4(A+iB)(e7+@e-
vhere,

~_ J,+@, ~=~,

D= (J,+ Y,)2+ (Y,–Jo)’, r+m=;

ind

()
A=VW cos whp Si.Uti-b ij-a CIOP~ PO’

(19)

t (20)
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When the.imaginsry part of Uis denoted by y, whicl
is the only part of interest, the vortici@ in the wake i
given by

Y=& cos kx+Brj Sillkx (21;

where

~Ao=@K-AJ) sin pt– (AK+BJ) cos pt
.
;BO= (BK–AJ) cos pt+ (AK+BJ) SiUpt

The induced vertical velocity ~t a great distance ~
downstream is

1
J

m ~dc’ =:(A sin b—BO cos kz)
“=2-T . . x—z’

The difTerencoin potential at points of the z axis in th(
wake is

and the kinetic ene~ in the wake (per unit length) ai
n point z along tho surface of discontinuity far from th
airfoil is 5

E1=*PWZ(H1) (22)

‘$&(&SiII ~—Bo Cos kX)2

-44(BK–AJ) Cos (pt+kx)

+ (AK+BJ) sin (pt+kz)]’

The mefin value of G with respect to time is inde-
pendent of z and is given by

z=&f%dt=g(A2+B’)

And, iimdly, the average valuo of the increase in ener~gy
in ‘tie field in unit time is

%V~=&b(A’+B’)

m also

~=n-pb$C,&’+Gw2+ G%’+X74&

+%%hJ+%w901

~here

Q’=h

(23)

Equation (12) now detines ~=o and hence ~z.
lave

F@= m–z
w

Fz=TH[A,bx+A2ml+& D:+ 2&&

+2A.SB&+24qA]
vhere from equations (15) and (23)

A,=B1–C,, A’=B’–L$ etc.

We

(24)

We shall now proceed to the direct calculation of P= from (13). The value of S is derived in appendix 11
nnd in complex form is given by
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and

–bmp cm w:&o%% sin n+:bfbpo cos w

The mean value of irpJ9with respect to time is

2
r2T ~

‘prp~di = &P+N9

This expression becomes, aftar a considerable number of terms cancel, “

We proceed to calculate the average values of the
tm &’ and 131’din (13) by employiw equations (7),
(8), and (11). There result-a

Z=rpbp2(b,ao2+2bda+2 biwti (27)

where

b,=b~-;-j$’+(;-a}~

b,=~(;+~ cm (w—n)+; sin (%—%)
1

{(
b,=; TI F Tm (3Ti cog ~%_w)

)‘~–~~+k~r

T,l Q T,O 1 .

)
+(–~+FzT+~ ~ ~ ~ (w-w) 1

(26)

(28)

“w)
1
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Finally from (13) the average propulsive force is

Fz=Tpl@J#+ (u’+ b9)ao9+ (f%+ca 50’

1+2(a4+&)&+2(a5+c5 @&

+Z(%+h+ddol (29)

In order that equations (24) and (29) agree we must
have that

A,=aq

A,=G+b,

As=%+%

&=rz,+b,

A=%+%

&=aa+bo+~

Each of these relations may be reduced
e. g., consider Al and al. From (15),

(30)

to an identity,
(23), and (26)

A1=B,–C,=F–:D

fq=.F+@

In order thrttAl=rzl the following rel@on must hold

F=F+(Y+&D (31)

To show that this is true note that

~= Jl(Jl+Yo)+Yl(%Jo)=J 1’+Yl’+JIYo–JoYl

(JI+YO)’+ (Y1–JO)’ D

F+@’= (F+M) (F–M)=J1’:y~

(cf. reference 5, p. 8) and frcm a well-known property
of the Bessel functions,

J, Yo–JoY,=~

Hence equation (31) follows.
By the use of the relation (31) and the definitions of

the various 2“s given in the appendix, it can be veri-
fied that the remaining relations in (3o) are also iden-
tities.

It may be of interest to consider the special csses of
one degree of freedom. Let the motion of the wing
consist only of the vertical motion h at right angles to
the direction of flight, i. e., flapping motion. The pro-
pelling force is then G

~.=zrpbp2&z(F+G’) (32)

Consider in this case the ratio

Fa energy of propulsion—=
w total energy

P+@
‘T (33)

This function, ahown in figure 3, represents the theo-
retical efficiency of the flapping motion (unity= 100 per-

6Tbh result - wltb the formulaof mm E&mSn and Borgem(mfomnmz p.
W). The oxpmdmu of refemnco2 denotedby

4-1+-41-A -41(Q–s)+ x Al (P–q
ha-AI-X .4, (Q–8–X A, (P–Q

mducaIn onr notationsbnply to 2F and X3,respootfvely.

:ent). It is observed that a
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propelling force exists in
;he entire range of I/k, the effici&cy ~eing 50 percent
~or infinitely rapid oscillation and 100 percent for
nfmitely slow flapping.

1.00

.83

P=?
T
.40

20

0 2 4 6 8 10 12 14 16 /8 20
m

?IQmmI—The ratfoofenmgyofproprdufonto the energymqtdmdto mafntfdntbe

()
mdllattom~ ‘~ a9a fnnotfonofl/k forW aasaofpnm Sopping.

For the speeial case of angular oscillations about a
done (h=O, /3=0) the horizontal force is

“ +&j–a)–&(~-fz)f (34)

5

4

3

K
2

I

o I 9 3 4m
fiGUEE4.-The mtio oftbe eneJWYdlmiIMti fn the wake to the en@JZYwnfmd to

maintafn tbe mollfatiom@~ m a fmmtlonof llk for the ~ of pnm angnfu
axfflatfonaabontz-a.

In figure 4 there is shown the ratio E/W, in this case
.—

for several positions of the axis of rotation. The9e
curves give the ratio of the energy per unit time released
in the wake to the work per unit time required to
maint@ the oscillations. In the range of values
0<~/W< 1, ~= is positive and denotes a thrust or
propelling force; for other values it is negative rmd
denotes a drag force.

L~GLIiIY ‘MEAtORIAL AERONAUTICAL LABORATORY,

NATIONAL ADVISORY COAUJITTED POR AERONAUTICS,

LANGLEY l?IELD, VA., May 4, 1936.



APPENDIX I

NOTATION

a, angle of a~tack (&~. 1). #

f?, aileron angle (fig. 1).

h, vertical distance (fig. 1).

uO, h, h W, w F-Z, ~wlitud~ ~d Ph=e M@
of the oscillations (equation (7)).

b, half chord, used as reference length.
z, coordinate in direction of airfoil chord.
t, time.
v, velocity of the general motion in direction o

z &s.
p, 2Z times the fiequeucy of the oscillations.
k, redd frequency (equation (2)). The wsm

length between successive wavea in the verb
wake is 2d/k.

a, coordinate of axis of rotation (fig. 1).
c, coordinate of aileron hinge (lig. 1).
i, imflginary unit l/=
e, base of natural logarithms.
p, mass density of air.

P, lift force on tioil (+dowmvard in fig. 1).
I& moment on airfoil about a (clockwise in fig. 1).
Mp, momont on aileron about c (+clochise in

fig. 1).
P~, liftforce on aileron (+downwrml in fig. 1).

C(k), ~, ~, Jo, Jl, Yo, ~,, J, K, D, Besd fUIICtiOIE of
the argument k. (Cf. equations (6) and
(19), fig. 2, and table I.)

~, average work done in unit time in maintaining
the oscillations.

~, swerage increase of kinetic eneqg- in the wake
in unit time.

F=, average force in the direction of the x axis
(+proption, –drag).

A,... AJ9B8,C18C8,...C8,&,... a6,bz,b4,be,G,G,%coefiicieni%
Q~defin~ by equation (18).

A, B, defined by equation (2o).
~, BO,deiined by equation (21).
M, N, defined by equation (25).

U, distribution of vorticity in
form (equation (16)).

426

the wake in complex

U&’*, coefficient of U, given in equation (19).
y, imaginary part of U.
8, defined by equation (13); see also appendix H.
I’, circulation about the airfoil, defined by equn-

tion (17).

DEFINITIONS OF THE T’s

T1 = –+(2+CWZ2+C COB-1c

T2=c(l—~— (1+ ~ COS-lC+C(COS-lC)z
?[Tz=T,(TII+ n)]

Ts= –;(l —&) (5f9+4) +;c(7+2&) ~ COS-l C

()– ;+(? (cm-’ Cy

Td=c~2—cm-1 C

T,= —(1—c+)+2c~ii3 CoS-lc— (coS-l Cy
T6=T2

()T7=;c(7+2d)~&– ~+d COS-lC

T,= ––&+2&)JK&+c Cos-’ C=–+(l–&)i-cT,

~lo=w+cos-l c

?,,= (2–C)JGZ?+ (1–2C) Cos-’ c

r,,= (2+c)~&– (1+2C) Cos-’ c
[TU–T,,=2T4]

m
18= –;(T7+ (c–a)T1)

“14=$++4
:m=T4+T10= (1 +C) ~d

“16= T1—T’— (c—a)T4+#ll

‘1,= —2T9— ()T,+ a–~ T4

‘18=T5—T4T,CI
;9=T4T,,
.=–~d+cos-’ c‘1

[T.= T,O–2.JG?F



APPENDIX II

EVALUATION OF S (EQUATION (2S))

I?rom reference 5 (p. 7) we have that the condition
for smooth flow at the traili~ edgeis obtained from the
equation

where the p’s are as follows (a + sign is to be preiixed
to each p, + for the upper surface, — for the lower
surface):

%=+V6%[4G2 COS-lC–(z—c) log Aq

–(z–c)’ log NJ

where
~= l–m– ~Kd.Jrd

x—c

Condition (1) leads to the relation (cf. (18))

1
s d– ()

~+qovp
- ~~ U&=va+h+lI ~—a ~2Tl —

+b~f)=Q (2)

The kading-edge vorticity may be written m

2s
2& (*+ ff=+p;+$&+p@+@) .._l =4~z

On substituting for the q’s, m “ use of relation (2)
Tand of equation XI, reference 5, w “ch is

L

2.

3.

4.

6.

6.

7.
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TABLE I.—VALUES OF THE BESSEL FUNCTIONS
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